中航天赫(唐山)钛业有限公司 2022 年度环境辐射监测报告

中航天赫(唐山)钛业有限公司 2022 年度环境辐射监测报告

报告编制人:王 啸

项目负责人: 屈武林

报告审核人:于丽丽

委托单位: 唐山南堡经济开发区管委会

编制单位:中矿(天津)岩矿检测有限公司

编制日期: 2023年3月23日

目录

1	单位概况	1
	1.1 地形地貌	2
	1.2 水资源	2
	1.3 水文地质	2
	1.4 气候特征	3
	2.1 工程主要原辅材料	3
	2.2 四氯化钛生产工艺	5
3	厂址辐射环境本底	9
4	监测依据和标准	LO
	4.1 监测依据1	LO
	4.2 监测标准1	10
5	质量保证1	10
	5.1 辐射环境质量监测的目的与原则	l 1
	5.2 实验室质量控制1	l 1
6	辐射环境监测	12
	6.1 辐射环境监测方案1	12
	6.2 辐射环境监测结果2	20
	6.3 辐射环境监测结果分析2	21
7	结论2	23
R	R付化 9	23

1 单位概况

中航天赫(唐山)钛业有限公司成立于 2005 年 4 月,座落于河北唐山曹妃甸区南堡经济开发区,注册资本 33988 万元,是一家致力于为航空、航天、国防建设领域提供优质海绵钛、钛材加工及相关产品研发为一体的专业制造商和服务商。厂区北侧为唐山三友化工股份有限公司,南侧焦化厂、相林皮革及三友集团碱厂,东为丽显公司,东侧 300m 为唐山化纤厂; 西为开阔的盐碱地; 东南 1300m 处为开发区居住区,距张庄子 2500m; 南距滨海镇 1600m, 东北方向 3500m 处为老王庄村,厂址附近无特殊环境敏感点。厂址地理位置及周边关系见图 1-1。2015 年该公司申请破产重组,2022 年唐山市人民法院宣告正式破产。根据 2022 年河北省生态环境厅发布的《关于 2022 年伴生放射性矿开发利用企业名录的通告》,该公司被列入伴生放射性矿开发利用企业名录。

图 1-1 厂址地理平面位置图

1.1 地形地貌

厂址所在地貌属滨海低平原,地势低洼平坦,场地自然高程 1.9 米左右,地形坡度约 5‰,土壤属重度盐碱质,多为盐碱苇地,可耕地甚少,无任何拆迁问题。

1.2 水资源

该区域境内的主要河流为黑沿子排干,是开发区唯一的排污渠道。

小戟门河原为天然排沥河道,发源于滦南县武庄窠,于小戟门村西汇入草泊水库。1962年开挖黑沿子排干,1965年将小戟门河和黑沿子排干接通,于黑沿子村东和沙河汇合后入海。该河全长 42.2 km,流域面积 240 km²,承担滦南、丰南及唐海汛期排洪任务。黑沿子排干上现有三座闸,丰南县大新庄闸,年调蓄水量 45 万 m³;沿庄调节闸,年调蓄水量 150 万立方米;唐海县八农场的六孔闸,年调节水量 150 万 m³。黑沿子排干草桥至沙河入口长 14.7 km,至入海口处无防潮蓄水闸。黑沿子排干是开发区唯一的排污渠道,在非养虾季节接纳开发区的生产废水和生活污水,养虾季节只接纳生活污水,生产废水实行定期排放制度。

开发区附近主要河流有沙河。沙河发源于迁安县如树店,流经滦县、唐山东矿区,穿过草泊水库,于黑沿子村东入海,全长 163 km,流域面积 1219 km²,属季节性行洪河道,全年一半以上时间处于干涸状态,沿途接纳工矿企业排水,入海处建有黑沿子防潮闸。

1.3 水文地质

本地区地质构造属第四纪全新世及晚新世构成,地层基本上呈水平分布,参照 唐山碱厂工程地质勘探资料,80 米深度内自上而下分为十层,表层黏土,中为亚黏土,深层为轻亚黏土。上部地耐力为 90 kPa,下卧层地耐力为 220 kPa。根据国家地 震局地质大队 1976 年 11 月编印的《京津唐地区地震烈度区划图》,该地区为七度 和八度交界区,1976 年唐山发生大地震,沿河道出现喷砂冒水和土壤液化现象。

水文地质属滨海冲洪积、海湖积低平原水文地质区。地下含水层主要由冲洪积、海积和湖积等沉积作用形成的中砂、中细砂层构成。第四系含水层分为三个含水组。浅层地下水咸水广布,底板埋深10~110米,属潜水~微承压水,矿化度达2~48 g/L,属卤水氯化钠型水,与第二含水组以粘沙土隔开;第二含水组埋深120~360米,单层厚度8~15米,与第三含水组以砂黏土隔开;第三含水组底板深度在400米以下。深层地下水一般为低矿化度(0.4~0.6 g/L)软水,水温19.5~25℃,目前水位-16~20米,据水利局1975~1988年统计,水位年降速1.1米。该区域主要开采利用中深层地下水,其水化学类型属重碳酸盐钠型水。地下水流向与地形及河流流向基本一致,水力坡度由北向南逐渐变缓,流向为从东流向西南。

1.4 气候特征

气候特征属温带大陆性季风气候,夏季基本受副热带高压影响,炎热多雨,冬季受蒙古气团和来自西伯利亚的寒流影响,寒冷干燥。受海洋气候影响,年平均风速较大,大风日数比内地平原多。全年平均气温为 11.9℃,最热月平均气温 26℃,最冷月平均气温-4.2℃;年平均空气相对湿度 65%;年平均降雨量 574mm,降水多集中在 6~8 月,占全年降水量的 70%;年平均蒸发量 2295.2mm;最大积雪深度 190mm;最大冻土深度 0.7m;年累积日照时间 2798.2 小时。

年主导风向为 SSW 风,其风向频率为 10.1%,次主导风向为 WSW 风,风向频率为 8.67%,年静风频率 2.53%。年总平均风速为 4.6 米/秒。

全年各类稳定度频率中,中性类最高,为65.16%,稳定类所占频率为16.98%,不稳定类为17.87%,从稳定度的频率分布看,区域大气湍流状况对污染物的扩散有利。2 生产工艺

2.1 工程主要原辅材料

采用沸腾氯化法工艺,以高钛渣和石油焦为原料生产出四氯化钛,再由四氯化 钛生产出产品海绵钛。生产工艺主要包括氯化、精制还原-蒸馏等。工程主要原辅材 料有高钛渣、石油焦、氯气、镁、铜、石墨电极,主要能源供应有煤、水、电等。

(1) 氯气

海绵钛生产过程中氯化工序每年需氯气量为 40800 吨,其中生产中氯气循环量为 23375 吨,年用新氯气量为 17425 吨。新氯气由唐山氯碱有限公司(双十工程)提供,厂内设置液氯库。碱厂提供气体氯,经管道送入本厂,在本厂内设置一缓冲罐与厂内循环氯气混合并均衡浓度,然后用于氯化炉生产。或用一吨钢瓶汽运至液氯库,然后用于氯化炉生产。。

(2) 高钛渣供应

生产所需高钛渣应符合 SY/T 298-2007 要求, TiO₂不小于 92%, 总铁不大于 4.0% CaO + MgO 不大于 1.5%, MnO₂ 不大于 4.5%, 品质为二级品以上。高钛渣年用量为 18700 吨, 主要供应厂商为阜新金属熔炼厂、河北宣化金属熔炼厂、云南路良铁合金厂。

(3) 石油焦

生产所需石油焦应符合 SH/T 0527-1992 要求,硫分 \leq 2.0%,挥发分 \leq 16%,灰分 \leq 0.8%,水分 \leq 3%。石油焦年用量为 5355 吨,由天津大港油田供应。

主要原辅材料及能源消耗情况见表 2-1。

序号	名称	单位	用量	来源				
	主要原辅材料							
1	高钛渣	+/0	18700	阜新金属熔炼厂、宣化金属熔炼厂、云南路				
1	同	t/a	18/00	良铁合金厂				
2	石油焦	t/a	5355	天津大港油田				
3	氯气	t/a	17425	唐山氯碱有限公司				
4	镁	t/a	504	国内市场				
5	铜	t/a	115	国内市场				
6	石墨电极	t/a	153.6	国内市场				

表 2-1 主要原辅材料及能源消耗情况

序号	名称	单位	用量	来源		
燃料						
7	煤	t/a	7710	唐山		
			供电			
8	电	kwh	2.0716×10 ⁸	开发区电网		
供水						
9	水	万 m³/a	57.55	开发水市政供水管网		

2.2 四氯化钛生产工艺

(1) 氯化

①配料、输送

高钛渣、石油焦与返回料按 100: 30: 2~3 进行配料后输送到竖井锤机,在物料输送过程中会产生少量的粉尘,通过脉冲袋式除尘器处理,粉尘达标排放,尘反回工艺过程中。

②粉碎

混合物料在竖井锤碎机中进行粉碎,粉碎后物料经风机引入旋风收尘装置进入料仓,收尘装置滤出气体引入风机进气口中。

③沸腾氯化

氯化炉在启动前先由重油或其它热源预热至 800℃以上,混合物料经料仓加入到沸腾氯化炉中,在氯化炉中通入氯气,在 800-1000℃高温下进行自热化学反应,由于反应过程为放热反应,其温度足以维持正常反应的进行,因此不再需要热源。反应产物主要是气态的 TiCl4。反应过程中产生部分尾气,主要成份有 Cl2、HCl、CO。反应后的氯化炉渣,主要成份是 C、FeCl3、、FeCl2、MnCl2、AlCl3、TiO2,属一般固体废物,送开发区渣场。

4)收尘

沸腾氯化炉产生的气态的反应物经收尘器处理,在收尘器中气态的四氯化钛及一些气态的杂质经收尘器上排口进入洗涤塔中,固态的沉渣则由收尘器底部收尘口

排出。收尘渣主要成份为 FeCl₃、FeCl₂、MnCl₂、CaCl₂、AlCl₃,经水洗后送渣场。

⑤洗涤

经收尘器处理后气体送到洗涤塔中进行冷却并经液态四氯化钛循环洗涤,液体进入浓密机中,浓密机底部泥渣经浓密机浓密后,用泥浆泵排至泥浆雾化器,雾化后的泥浆返回到收尘器中,浓密机上部液态为粗四氯化钛,排入到粗四氯化钛产品贮罐中,氯化尾气经折流板槽气液分离后至尾气经处理设施。

⑥尾气处理

沸腾氯化产生的尾气经管道引入尾气处理设施中,首先经两级水洗装置处理,生成副产品盐酸,再经碱洗装置处理,生成副产品次氯酸钠。经处理后的尾气经100米排气筒达标排放。

工艺流程及排污节点图见图 2-1

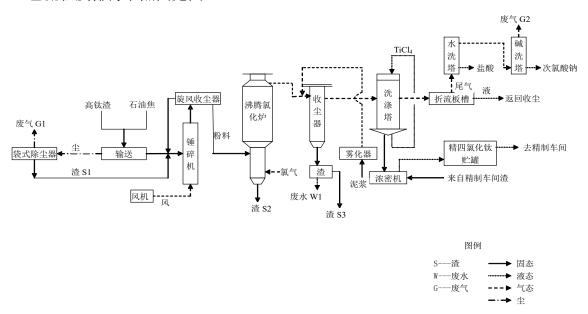


图 2-1 氯化车间生产工艺流程与排污节点图

(2) 精制

①去高沸点杂质

由氯化车间生成的粗四氯化钛经高位槽加入蒸馏釜 I 中,经电加热后,在蒸馏釜 I 控制温度 140-160℃将液态四氯化钛加热成气态,而沸点高于 140-160℃的杂质

仍以液态形式存在,进入蒸馏塔中进行气液分离,高沸点杂质以液态从蒸馏釜 I 中排出,这部份杂质含 TiCl₄、FeCl₂、FeCl₃、MnCl₂等,由于杂质中含有 50%左右的 TiCl₄,经泵槽返回到氯化车间浓密机中,经雾化器进入收尘器中,TiCl₄气体经收尘器上排口进入洗涤塔中,固态的沉渣则由收尘器底部收尘口排出。

从氯化往精制送精 TiCl4时,氯化贮罐需进气,精制的贮罐需要排气,为了避免空气对 TiCl4的污染,同时也减少 TiCl4对大气的污染,氯化和精制的贮罐气体入口采取相互串联方式,多余的气体进入氯化尾气净化系统。精制和还原的贮罐也采取样方式。

②去低沸点杂质

气态四氯化钛冷却成液态后进入蒸馏釜Ⅱ中,经电加热后在蒸馏釜Ⅱ中控制温度 140℃,四氯化钛仍以液态形式存在,沸点低于 140℃的低沸点杂质以气态形式进入精馏塔,经气液分离、冷却后排出精馏塔,进入低沸点杂质贮罐,这部分杂质中含 TiCl₄和 SiCl₄。

本工程中设有 SiCl₄ 提纯装置浮阀精馏塔,低沸点杂质通过高位槽加入到蒸馏釜中,蒸馏釜经电加热后控制温度在 140℃,精馏塔的塔顶温度控制在 140℃以下,再经冷却后进入 SiCl₄ 贮罐中外售,塔底分离出 TiCl₄ 进精四氯化钛贮罐。

③除矾

液态四氯化钛从蒸馏釜Ⅱ中排出再经蒸馏釜Ⅲ经电加热成气态后进入铜丝塔中 (塔内装有铜丝球的填料),在除丝塔内进行除钒。

钒在高钛渣中以 V_2O_5 的形式存在,在氯化反应中,他生成了 $VOCl_3$,以液态的形式存在于 $TiCl_4$ 中, $VOCl_3$ 的沸点与 $TiCl_4$ 相近,约为 127℃。再用物理的方法将它除去,已很不容易,于是改用化学方法。

除钒的方法是:气态的 TiCl4通过装有铜丝球的填料塔, VOCl3与铜发生了如下反应:

VOCl₃+Cu→VOCl₂•CuCl ↓

生成的 VOCl₂变成了固态,附着在铜丝表面上。久之,它将复盖铜丝的全部表面,铜丝将失去除钒作用。每一台铜丝填料塔的周期产量约为 300 t 左右。因此需将失去活性的铜丝填料表面重新活化,活化的方法是进行酸洗使 VOCl₂溶解在盐酸中。铜丝填料经酸洗、水洗、酒精脱水、干燥后重新装入填料塔中。

清洗完铜丝的废酸中含有: CuCl₂、VOCl₂•CuCl,在废酸中加入 Na₂S。

HCl+ VOCl2•CuCl+ CuCl 2+Na2S—CuS ↓ + NaCl+H2O+VS ↓

经过滤后 CuS、VS 送往渣棚堆放待处理, NaCl 溶液送往污水处理站。

工艺流程及排污节点图见图 2-2。

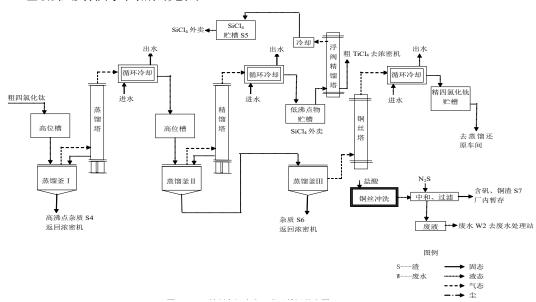


图 2-2 精制车间生产工艺及排污节点图

(3) 还原-蒸馏

液态精四氯化钛进入还原炉与液镁进行还原反应生成粗海绵钛坨。海绵钛坨经破碎加工后经筛分、混匀为成品海绵钛。在海绵钛破碎加工过程中产生微量粉尘, 经收尘系统处理后外排。氯化镁去镁电解车间再生镁和氯气。

工艺流程及排污节点图见图 2-3。

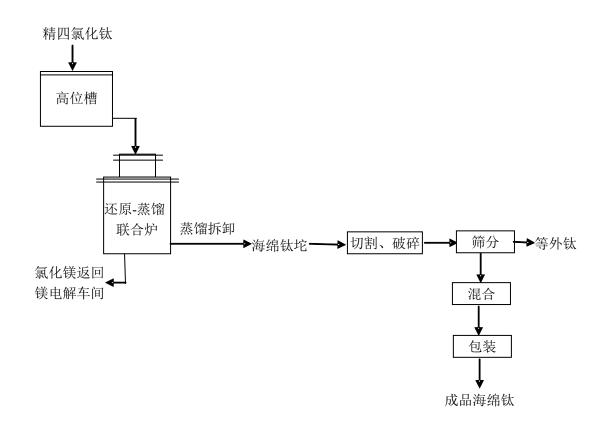


图 2-3 还原-蒸馏车间生产工艺及排污节点图

3 厂址辐射环境本底

根据 2018 年度开展的"全国第二次污染源普查伴生放射性矿普查项目",《2018 年全国辐射质量报告》结果显示,河北省内各监测站 γ 辐射剂量率监测结果平均值为 74. 3~81. 2 nGy/h。

根据《伴生放射性矿开发利用环境辐射限值》(报批稿),同时参照《铀矿冶辐射防护和辐射环境保护规定》(GB23727-2020),土地去污整治后任何 100m 范围内Ra-226、Th-232 平均活度浓度扣除当地本底后不超过 180Bq/kg。据调查,唐山地区土壤中放射性核素 Ra-226 本底水平为(13.2-41.0)Bq/kg,平均为 25.2Bq/kg;Th-232 本地水平为(21.6~50.9) Bq/kg,平均为 35.4Bq/kg:即场地治理后土壤中核素 Ra-226、Th-232 残留量限值分别为 205Bq/kg 和 215Bq/kg

4 监测依据和标准

4.1 监测依据

《国务院关于印发土壤污染防治行动计划的通知》(国发「2016]31号)

《国务院关于核安全与放射性污染防治"十三五"规划及 2025 年远景目标的批复》(国函「2017] 29号)

《伴生放射性矿开发利用企业环境辐射监测及信息公开办法(试行)》(国环规辐射〔2018〕1号)。

4.2 监测标准

《辐射环境监测技术规范》HJ 61-2021;

《铀矿冶辐射环境监测规定》GB 23726-2009;

《环境核辐射监测中土壤样品采集与制备的一般规定》EJ 428-89;

《固体污染源监测质量保证与质量控制技术规范(试行)》HJ/T 373-2007;

《环境 γ 辐射剂量率测量技术规范》 HJ 1157-2021;

《环境空气中氡的测量方法》HJ 1212-2021:

《放射性矿产地质分析测试实验室质量保证规范》EJ/751-2014

《硅酸盐岩石化学分析方法 第 30 部分 44 个元素量的测定》 GB/T 14506.30-2010 《高纯锗γ能谱分析通用方法》GB/T 11713-2015。

5 质量保证

环境辐射监测的质量保证按照《辐射环境监测技术规范》HJ 61-2021 和《固废污染源监测质量保证与质量控制技术规范(试行)》HJ/T 373-2007、《放射性矿产地质分析测试实验室质量保证规范》EJ/751-2014 中相关要求进行。

5.1 辐射环境质量监测的目的与原则

5.1.1 辐射环境质量监测的目的

- (1) 判断伴生放射性矿开发利用活动流出物是否达标排放;
- (2)判断环境中放射性污染及其来源,报告辐射环境质量状况,掌握活动期间 辐射环境质量,积累环境辐射水平数据,掌握辐射环境质量的变化趋势,总结辐射 环境的变化规律,了解辐射环境水平是否异常,为辐射环境管理提供依据。

5.1.2 辐射环境质量监测的原则

辐射环境质量监测的内容,因监测对象的类型、规模、环境特征等因素的不同 而变化;在进行辐射环境质量监测方案设计时,应根据辐射防护最优化原则,进行 优化设计,随着时间的推移和经验的积累,可进行相应的改进。

5.2 实验室质量控制

样品分析测试由中矿(天津)岩矿检测有限公司完成。该公司具有完备的内部质控管理体系,实验室质控样品包括:方法空白,实验室控制样,实验室平行样及基质加标样品的检测分析对检测质量进控制。实验室使用方法空白样用以确保实验过程中无污染,每批次监测样品应做全程序空白样品,以判断分析结果的准确性。可根据分析方法的需要,在分析结果中扣除全程序空白值对监测结果进行修正;使用质控样用以检测仪器状态且保证实验质量;使用基质加标样及基质加标平行样品用以确保每种物质的回收率达到国家标准;使用平行样用以检测仪器精度且保证数据准确。

5.2.1 土壤检测实验室质量控制

本次监测项目中土壤检测实验室平行质量控制如表 5-1 所示。

表 5-1 土壤检测实验室平行质量控制

分析项目	单位	原始结果	平行样结果	相对偏差(%)	判定结果
Æth.	11.0/0	1.04	1.00	1.96	合格
铀	μg/g	1.41	1.37	1.44	合格
钍	11. ~/~	6.58	6.66	0.60	合格
tl.	μg/g	6.22	6.19	0.24	合格
镭-226	Bq/kg	14.1	14.3	0.70	合格

6 辐射环境监测

6.1 辐射环境监测方案

6.1.1 辐射环境监测点位布设

本次受甲方唐山南堡经济开发区管委会委托,对中航天赫(唐山)钛业有限公司开展辐射环境监测项目,根据甲方要求,本次监测方案涉及空气氡及其子体、陆地γ辐射剂量率和土壤,依据《伴生放射性矿产资源开发利用企业环境辐射监测及信息公开管理办法(试行)》、《辐射环境监测技术规范》HJ 61-2021、《环境核辐射监测中土壤样品采集与制备的一般规定》EJ 428-89确定布点方案,对厂区周边陆地γ辐射剂量率和土壤进行现场监测和实验室检测分析。本次监测项目中,土壤样品按要求采集7组,其中包含一组土壤对照,对照点设置在厂区上风向口处即厂区西北角,土壤采集使用洛阳铲采集样品,采样点原则布设在绿地等开阔的松软地块,尽量减少对硬化地面的破坏。采取垂直深20cm的表层土。空气中氡及其子体监测点3个,包括设施周围最近居民点、最大风频巅峰向500米附近居民点及一个对照点,采用现场监测方式进行监测。陆地γ辐射空气吸收剂量率监测点位17个,其中包括厂界四周,土壤样品采集点,空气氡监测点,易洒落矿物公路及一个对照点,采用现场监测方式进行监测。本次监测布点方案与2021年度辐射环境监测布点方案保持一致,具体点位分布情况见图6-1,点位详情见表6-1。

图 6-1 环境辐射监测点位示意图

表 6-1 监测点位信息

序 号	点位/样品编号	经度	纬度	监测项 目	监测频次	备注
1	ТН γ-1	118.2007	39.25606		1	厂界南
2	ТН γ-2	118.1959	39.26016		1	厂界北
3	ТН γ-3	118.2035	39.25920		1	厂界东
4	ТН γ-4	118.1916	39.25722	γ辐射 剂量率	1	厂界西
5	ТН γ-5	118.2022	39.25602	川里午	1	易洒落公路点1
6	ТН γ-6	118.1940	39.25617		1	易洒落公路点2
7	ТН γ-7	118.1862	39.25613		1	对照点
8	TH γ-8/TH k-1	118.2086	39.25150	γ辐射	1	设施周围最近居民点
9	TH γ-9/TH k-2	118.2028	39.25606	剂量率	1	最大风频下风向 500 米内最近居民点
10	TH γ-10/TH k-3	118.1925	39.26017	/	1	环境空气对照点

序号	点位/样品编号	经度	纬度	监测项 目	监测频次 (次/年)	备注
11	TH γ-11/ TH T-1	118.1967	39.25616		1	土壤采样点(厂界南)
12	TH γ-12/ TH T-2	118.2002	39.26012		1	土壤采样点(厂界北)
13	TH γ-13/ TH T-3	118.2035	39.25760	γ辐射	1	土壤采样点(厂界东)
14	TH γ-14/ TH T-4	118.1916	39.25840	剂量率 /铀	1	土壤采样点(厂界西)
15	TH γ-15/ TH T-5	118.2031	39.25603	-238、 钍 -232、	1	土壤采样点(排气口 最大风频下风向 500 米范围内)
16	TH γ-16/ TH T-6	118.1987	39.26005	镭-226	1	土壤采样点(厂界和 废水排放口最近农 田)
17	TH γ-17/ TH T-7	118.1926	39.26021		1	土壤对照点

6.1.2 γ辐射剂量率监测

6.1.2.1 监测点定位

本次项目所有地表 γ 辐射剂量率监测点采用手持 GPS 定点,测量时根据现场实际情况调整测点位置,定点进行航迹管理,留下航迹记录,并提交航迹图。由于在实际工作中,所选用的西安 80 坐标系和 WGS-84 大地坐标系之间的误差是固有的,手持 GPS 经纬度值和图件的地形线会有一定程度的误差存在,因此在工作区内的与己知的控制点进行校正,使控制点坐标值和实际对应点 GPS 的坐标保持一致,这样就达到了消除误差和准确校正仪器的目的。

6.1.2.2 监测设备

本次现场监测采用的 X、 γ 剂量率仪(辐射防护剂量仪表)/中能 X 射线空气比释动能(图 6-2),该设备的性能如下:

- 1) 能量响应: 15KeV~10MeV, 指示值变化范围≤±30%
- 2) 量程范围: 50 nSv/h~10Sv/h

- 3) 持续测量模式下固有误差: ≤±15%
- 4) 重复性: 0.7% (测定点约定值 5.4μSv/h)
- 5) 不稳定性: ≤±5% (连续工作)
- 6) 温湿度影响: ≤10% (5℃~40℃, 相对湿度 95%);
- 7) 抗干扰能力: ≤5%;
- 8)使用环境:温度: (-30~+50) ℃ 相对湿度: 35%~95%
- 9) 功耗:满电蓄电池供电,可以连续工作12h。
- 10) 外形尺寸 (233×85×67) mm: 0.9kg

图 6-2 x-γ剂量率仪

6.1.2.3 现场监测方法

使用便携式 X、 γ 剂量率仪(辐射防护剂量仪表)对厂界周围开展监测。本次 γ 辐射剂量率测量采用即时测量法,就是将 γ 辐射剂量率仪直接测量出点位上的 γ

辐射空气吸收剂量率的瞬时值,在测量过程中尽量保持仪器的探头表面与被测点的表面水平,间距为 1m,测点距附近高大建筑物的距离需大于 30m。当进行建筑物内测量时,需考虑建筑物的类型和层次,在室内中央距地面 1m 高度处进行(见图 6-3)。每个测点连续测量 10 次,每次测量时间为 10s,并将测试结果填入《现场监测 γ 剂量率监测原始记录表》。

图 6-3 现场γ辐射剂量率监测

6.1.3 空气中氡浓度及其子体

6.1.3.1 监测点定位

本次项目所有氡浓度及其子体监测点采用手持 GPS 定点,测量时根据现场实际情况调整测点位置,定点进行航迹管理,留下航迹记录,并提交航迹图。由于在实际工作中,所选用的西安 80 坐标系和 WGS-84 大地坐标系之间的误差是固有的,手持 GPS 经纬度值和图件的地形线会有一定程度的误差存在,因此在工作区内的与已知的控制点进行校正,使控制点坐标值和实际对应点 GPS 的坐标保持一致,这样就达到了消除误差和准确校正仪器的目的。

6.1.3.2 监测设备

本次现场监测采用的测氡仪/JCD-270(s)/HB- J- 121(图 6-4),该设备的性能如下:

- 1) 本底计数: <0.5count/min
- 2) 探测灵敏度: >1.3 count/min(/Bq.m3)
- 3) 探测下线: <2 Bq/m³
- 4) 测量范围: 2~400000 Bg/m³
- 5)测量不确定度: ≤10% (K=2)
- 6) 测量时间: <5分钟
- 7) 存储功能:自动保存1000条谱线,可随时复查;
- 8) 电源: +12V(可充电电池)
- 9) 环境条件: -10℃~+50℃
- 10) 相对湿度: ≤95%
- 11) $26\times30\times15$ cm.

图 6-4 测氡仪

6.1.2.3 现场监测方法

使用测氡仪/JCD-270(s)/HB- J-121对氡浓度开展监测。本次氡浓度测量采用即时测量法,测量空气中氡浓度时,仪器放置仪器架上,进气口距地面约1.5m,且必须接干燥管。要远离公路,远离烟囱。地势开阔,周围10米内无树木和建筑物。每个测点单次测量时间3600秒,并将测试结果填入《现场监测γ剂量率监测原始记录表》。

6.1.4 土壤样品采样

本次监测项目中,土壤样品采集位置与γ辐射剂量率监测位置保持一致,采集并送检土壤样品7组,其中包含一组土壤对照,对照点设置在厂区上风向口处即厂区西北角,土壤采集使用洛阳铲采集样品,采样点原则布设在绿地等开阔的松软地块,尽量减少对硬化地面的破坏。采取垂直深 20cm 的表层土。

当采样对象为散状堆放样品时,可采用对角线型、梅花形、蛇形或棋盘型采样

法进行,将各点采得的样品混合在一起成一个完整样。

取出的土壤除去石块、草根等杂物,取 1.0 kg 样品装在塑料密封袋中。为避免样品间交叉污染,每个采样点更换一次性丁腈手套,采样完成后,对采集样品编号,并填写采样记录。现场采样照片如图 6-4 所示。

图 6-4 土壤采样

样品保存涉及采样现场样品保存、样品暂存保存和样品流转保存要求,应遵循以下原则进行:

- 1)土壤样品保存参照《环境核辐射监测中土壤样品采集与制备的一般规定》(EJ 428)的要求进行。
- 2)现场样品保存。采样现场需配备样品保温箱,保温箱内放置冷冻的蓝冰,样品 采集后应立即存放至保温箱内,保证样品在 4℃低温保存。

- 3)样品暂存保存。如果样品采集当天不能将样品寄送至实验室进行检测,样品 需用冷藏柜 4℃低温保存,冷藏柜温度应调至 4℃。
- 4)样品流转保存。样品寄送到实验室的流转过程要求保存在存有冷冻蓝冰的保温箱内,4℃低温保存流转。

土壤样品监测指标为铀、钍和镭-226。

6.2 辐射环境监测结果

监测结果表明,厂区周边 γ 辐射剂量率范围为 $43.0\sim74.0$ nGy/h,空气氡浓度范围为 $20.46\sim32.73$ Bq/m³,土壤中铀含量范围为 $1.02\sim1.58$ μ g/g,土壤中钍含量范围为 $4.43\sim8.87$ μ g/g,土壤中镭-226 含量范围为 $14.9\sim22.3$ Bg/kg,详细监测结果见表 $6-2\sim6-4$ 。

表 6-2 γ辐射剂量率监测结果统计

序号	监测点位	γ辐射剂量率 (nGy/h)
1	厂界南	71.6
2	厂界北	59.5
3	厂界东	74.0
4	厂界西	61.0
5	易洒落公路点1	43.0
6	易洒落公路点 2	62.9
7	设施周围最近居民点	57.3
8	最大风频下风向 500 米内 最近居民点	54.6
9	环境空气对照点	58.4
10	土壤采样点(厂界南)	56.3
11	土壤采样点(厂界北)	56.9
12	土壤采样点(厂界东)	51.8
13	土壤采样点(厂界西)	65.8

序号	监测点位	γ辐射剂量率 (nGy/h)
14	土壤采样点(排气口最大风频下风向 500 米范围内)	63.1
15	土壤采样点(厂界和废水排放口最近农田)	61.5
16	土壤对照点	43.8
平均	/	58.8
17	对照点	62.7

表 6-3 空气氡监测结果统计

序号	监测点位	氡浓度 (Bq/m³)
1	设施周围最近居民点	20.46
2	最大风频下风向 500 米内最近居民点	32.73
3	环境空气对照点	12.28

表 6-4 土壤监测结果统计

序	1次河上 45	铀	铀-238	钍	钍-232	镭-226
号	监测点位	(µg/g)	(Bq/kg)	(µg/g)	(Bq/kg)	(Bq/kg)
1	土壤采样点(厂界南)	1.02	12.7	6.62	26.9	14.9
2	土壤采样点(厂界北)	1.21	15.1	6.32	25.6	17.1
3	土壤采样点(厂界东)	1.29	16.0	7.35	29.8	19.2
4	土壤采样点(厂界西)	1.10	13.7	4.43	18.0	15.3
_	土壤采样点(排气口	1.20	15.3	6.20	25.2	20.2
5	最大风频下风向 500 米范围内)	1.39	17.3	6.20	25.2	20.3
	土壤采样点(厂界和					
6	废水排放口最近农	1.58	19.7	8.87	36.0	22.3
	田)					
7	土壤对照点	0.98	12.2	5.22	21.2	14.2

注: 铀-238 核素活度和钍-232 核素活度,是依据《放射性矿产地质分析测试实验室质量保证规范》(EJ/T 751-2014),由铀和钍的含量换算而得。

6.3 辐射环境监测结果分析

辐射环境监测数据表明,中航天赫(唐山)钛业有限公司的厂界四周γ辐射剂

量率在 43.0~74.0nGy/h 之间, 平均值为 58.8nGy/h, 小于对照点的数值 (62.7nGy/h), 与 2021 年监测平均值 (60.3nGy/h) 保持在同一水平。根据 2018 年度开展的"全国第二次污染源普查伴生放射性矿普查项目", 唐山市 γ 辐射剂量率的本底水平为 (34.5~65.8) nGy/h, 平均值为 49.6 nGy/h, 低于本次监测结果。据《2021 年全国辐射质量报告》结果显示,河北省内各监测站 γ 辐射剂量率监测结果平均值为 63.25~92.7 nGy/h, 与本次 γ 辐射剂量率监测结果相近。本次监测报告结果表明,中航天赫(唐山)钛业有限公司厂界四周的陆地 γ 辐射剂量率处于正常本底水平。

中航天赫(唐山)钛业有限公司的厂界四周土壤中,铀-238 含量在 12.7~19.7Bg/kg之间,平均值为 15.7Bg/kg,略高于对照点的监测值(12.2Bg/kg),与2021 年监测平均值(22.3Bg/kg)保持在同一水平;钍-232 含量在 18.0~36.0Bg/kg之间,平均值为 26.9Bg/kg,略高于对照点的监测值(21.2Bg/kg),与 2021 年监测平均值(35.3Bg/kg)保持在同一水平;镭-226 含量在 14.9~22.3Bg/kg 之间,平均值为 18.1Bg/kg,略高于对照点的监测值(14.2Bg/kg),与 2021 年监测平均值(23.7Bg/kg)保持在同一水平。以上数据均接近《2021 年全国辐射质量报告》中河北省土壤中的放射性核素γ能谱监测结果(铀-238 含量范围为 20~40Bg/kg、钍-232 含量范围为 23~49Bg/kg、镭-226 含量范围为 18~33Bg/kg)。本次监测报告结果表明,中航天赫(唐山)钛业有限公司厂界四周土壤中铀-238、钍-232、镭-226含量均属于正常本底水平。

中航天赫(唐山)钛业有限公司的最大风频下风向 500 米内居民点氡浓度均值 为 32.73Bq/m³;设施周围最近居民点氡浓度值为 20.46Bq/m³;环境空气对照点氡浓度值为 12.28 Bq/m³。以上数据均小于《民用建筑工程室内环境污染控制标准》GB 50325-2020》中一类民用建筑工程中≤150 Bq/m³的要求,故中航天赫(唐山)钛业有限公司周围氡浓度均属于正常本底水平。

7 结论

根据本次中航天赫(唐山)钛业有限公司环境辐射监测结果表明,厂界四周 γ 辐射剂量率、土壤中放射性核素(铀-238、钍-232、锰-226)以及空气中氡浓度属于正常本底水平。

8 附件

检测报告(报告编号: 2023(HJ)-098, 2023(HJ)-099, 2023(YK)-019, HB230301401KQ)。

中矿(天津)岩矿检测有限公司 Sinomine Rock and Wineral Analysis (Tianjin)Co.,Ltd.

TESTING REPORT

客户名称 CUSTOMER NAME	唐山市南堡经济开发区管委会
检测类别 TEST CATEGORY	委托检测
检测项目 TESTING ITEM	X-γ辐射剂量率
样 品 数 量 SAMPLE QUANTITY	17个
报告编号 REPORT NUMBER	2023 (HJ) -098
报告日期 REPORTING DATE	2023. 3. 16

编制人

审核人 授权签字人
REVIEWED BY STATE AUTHORIZED SIGNATORY

报 告 说 明

- 1、此检测报告仅对客户所送样品负责。
- 2、客户对此报告有异议,十五日内向本室提出,逾期不予受理。
- 3、除客户另有约定外,对一般的分析样品仅保留一个月(水份样品只保存48个小时),从报告发出之日起,超过此时限,不再保管样品;
- 4、对转抄、部分复印、未加盖本单位检测专用章、未有本单位批准人签章的检测报告,均为无效。
- 5、送检样品信息为客户提供,本报告不对送检样品信息真实性负责。

单位名称:中矿(天津)岩矿检测有限公司

通信地址: 天津开发区中区纺五路36号综合实验大楼(研发一)

邮政编码: 300270

联系人: 于丽丽 电 话: 022-59795580 022-59795578(传真)

电子邮箱: zkjcgs@126.com 网 址: www.zkjc11.com

空意

用道

中矿(天津)岩矿检测有限公司检测报告

报告编号: 2023(HJ)-098					
客户名称	唐山市南堡经济开发区管委会				
客户地址	南堡	开发区工业园区			
项目名称	唐山天赫钛业有限公司2022年度伴生	E放射性矿产资源F	干发利用企业环境辐射监测项目		
项目地点	唐山え	天赫钛业有限公 司]		
检测日期	2023. 3. 14	报告日期	2023. 3. 16		
季度γ辐射空气吸收剂量率		- 测点数 17个			
检测项目	X-	γ辐射剂量率			
检测依据	《环境γ辐射剂量率	区测量技术规范》	НЈ 1157-2021		
仪器设备 名称及型 号	X-γ剂量率仪 AT1123				
情况说明	_				
备注		_			

中矿(天津)岩矿检测有限公司检测报告

报告编号: 2023(HJ)-098

	2023 (HJ) -098	检测数据	居汇总表		
序号	点位	测点位置	Χ-γ辐射剂量率	标准偏差	
	单位		nGy/h	nGy/h	
1	НЈ23098-0001	厂界南	71. 6	11. 4	
2	НЈ23098-0002	厂界北	59. 5	3. 7	
3	НЈ23098-0003	厂界东	74. 0	7. 2	
4	НЈ23098-0004	厂界西	61. 0	4. 3	
5	НЈ23098-0005	易洒落公路点1	43. 0	3. 7	
6	НЈ23098-0006	易洒落公路点2	62. 9	8.8	
7	НЈ23098-0007	对照点	62. 7	9. 4	
8	НЈ23098-0008	设施周围最近居民点	57. 3	5. 1	
9	НЈ23098-0009	最大风频下风向500米 内最近居民点	54. 6	9. 4	
10	НЈ23098-0010	空气对照点	58. 4	5. 3	
11	НЈ23098-0011	土壤采样点(厂界南)	56. 3	3. 2	
12	НЈ23098-0012	土壤采样点(厂界北)	56. 9	3. 9	
. 13	НЈ23098-0013	土壤采样点(厂界东)	51.8	4. 5	
14	НЈ23098-0014	土壤采样点(厂界西)	65. 8	12.9	
15	НЈ23098-0015	土壤采样点(排气口最大风频下风向500米范围内)	63. 1	6. 5	
16	НЈ23098-0016	土壤采样点(厂界和废水排放口最近农田)	61. 5	4. 3	
17	НЈ23098-0017	土壤对照点	43.8	6. 1	

中矿(天津)岩矿检测有限公司检测报告

报告编号:2023(HJ)-098

布点示意图

以下空白

中矿(天津)岩矿检测有限公司 Sinomine Rock and Wineral Analysis (Tianjin)Co.,Ltd.

TESTING REPOR

客	户	名	称
CUST	ГОМ	ER N	AMI

E 唐山市南堡经济开发区管委会

检测类别 TEST CATEGORY 委托检测

样品名称 SAMPLE NAME ___ 土壤

样品数量 SAMPLE QUANTITY 7件

报告编号 REPORT NUMBER 2023 (HJ) -099

报告日期 REPORTING DATE 2023. 3. 21

编制人 (本本 审核人 PREPARED BY AUTHORIZED SIGNATORY - 70 70 PREPARED BY AUTHORIZED SIGNATORY - 70 PREPARED BY AUTHORIZED BY AUTHORIZ

报 告 说 明

- 1、此检测报告仅对客户所送样品负责。
- 2、客户对此报告有异议,十五日内向本室提出,逾期不予受理。
- 3、除客户另有约定外,对一般的分析样品仅保留一个月(水份样品只保存48个小时),从报告发出之日起,超过此时限,不再保管样品;
- 4、对转抄、部分复印、未加盖本单位检测专用章、未有本单位批准人签章的检测报告,均为无效。
- 5、送检样品信息为客户提供,本报告不对送检样品信息真实性负责。

单位名称:中矿(天津)岩矿检测有限公司

通信地址: 天津开发区中区纺五路36号综合实验大楼 (研发一)

邮政编码: 300270

联系人: 于丽丽 电 话: 022-59795578

电子邮箱: zkjcgs@126.com 网 址: www.zkjc11.com

限公司 遂 作 告

报告编号: 2023(HJ)-099

客户名称	唐山市	唐山市南堡经济开发区管委会	发区管委会
客户地址	基	南堡开发区工业园区	小园区
样品名称	土壤	样品数量	T //t
收样日期	2023. 3. 3	报告日期	2023. 3. 21
来样方式	送样	样品状态	颗粒
项目名称	唐山天赫钛业有限公司2022年度伴	生放射性矿	唐山天赫钛业有限公司2022年度伴生放射性矿产资源开发利用企业环境辐射监测项目
备注		\	

第1页 共3页

限公司 遂 作 作 检报 中矿 (天津) 岩矿林

报告编号: 2023(HJ)-099

	备注
備-226 《高纯锗γ能谱分析通用方法》 B/T 11713-2015	检测依据

第2页 共3页

限公司 有告 溪 检报 中矿 (天津) 岩矿

报告编号: 2023(HI)-099

			分析结果
产	样品编号	样品原编号	错-226
	单位		Bq/kg
1	HJ23099-0001	厂界南	14.9
2	HJ23099-0002	厂界北	17.1
3	HJ23099-0003	厂界东	19. 2
4	HJ23099-0004	厂界西	15.3
2	HJ23099-0005	排气口最大风频下风向 500米范围内	20.3
9	HJ23099-0006	厂界和废水排放口最近 农田	22.3
2	HJ23099-0007	土壤对照点	14.2
			以下空台

TESTING REPORT

客户名称 CUSTOMER NAME	唐山市南堡经济开发区管委会	
检测类别 TEST CATEGORY	委托检测	
样 品 名 称 SAMPLE NAME	地质矿产品	
样 品 数 量 SAMPLE QUANTITY	7件	
报告编号 REPORT NUMBER	2023 (YK) -019	
报告日期 REPORTING DATE	2023. 3. 22	

编制人 PREPARED BY

审核人 授权签字人、7~7 REVIEWED BY STATE AUTHORIZED SIGNATORY 57~7 授权签字人

报 告 说 明

- 1、此检测报告仅对客户所送样品负责。
- 2、客户对此报告有异议,十五日内向本室提出,逾期不予受理。
- 3、除客户另有约定外,对一般的分析样品仅保留一个月(水份样品只保存48个小时),从报告发出之日起,超过此时限,不再保管样品;
- 4、对转抄、部分复印、未加盖本单位检测专用章、未有本单位批准人签章的检测报告,均为无效。
- 5、送检样品信息为客户提供,本报告不对送检样品信息真实性负责。

单位名称:中矿(天津)岩矿检测有限公司

通信地址: 天津开发区中区纺五路36号综合实验大楼(研发一)

邮政编码: 300270

联系人: 于丽丽 电 话: 022-59795578

电子邮箱: zkjcgs@126.com 网 址: www.zkjc11.com

测有限公司告 中矿 (天津) 岩矿 检检 侧侧 视

报告编号: 2023 (YK)-019

客户名称	上 中 里	唐山市南堡经济开发区管委会	发区管委会
客户地址		南堡开发区工业园区	区層区
样品名称	地质矿产品	样品数量	7 件
收样日期	2022. 3. 3	报告日期	2023. 3. 22
来样方式	送样	样品状态	颗粒
项目名称	唐山天赫钛业有限公司2022年度伴	生放射性矿	唐山天赫钛业有限公司2022年度伴生放射性矿产资源开发利用企业环境辐射监测项目
备注			

第1页 共3页

中矿 (天津) 岩矿检测有限公司检测报报 告

报告编号: 2023(YK)-019

第30部分 44个元素量的测定》 GB/T 14506.30-2010 第30部分 44个元素量的测定》 GB/T 14506.30-2010	《硅酸盐岩石化学分析方法 第30部分 44个元素量《硅酸盐岩石化学分析方法 第30部分 44个元素量	4 年	检测依据各许
--	--	-----	--------

第2页 共3页

限公司 遂 作 告 中矿 (天津) 岩矿 检检 例 视 报

报告编号: 2023 (YK)-019

					分析结果
序号	样品编号	样品原编号	桰	每	
	東	单位	g/g n	в/в п	
1	YK23019-0001	厂界南	6.62	1.02	
2	YK23019-0003	厂界北	6.32	1.21	
3	YK23019-0004	厂界东	7.35	1.29	
4	YK23019-0005	厂界西	4.43	1.10	
2	YK23019-0006	排气口最大风频下风向500米范围内	6.20	1.39	
9	YK23019-0008	厂界和废水排放口最近农田	8.87	1.58	
2	YK23019-0009	土壤对照点	5.22	0.98	

以下空白

检验检测报告

报告编号 NO.: HB230301401KQ

样品类别	环境空气
承	中矿(天津)岩矿检测有限公司

检验检测报告

	3.0	7	
受检单位名称		中航天赫(唐山)	钛业有限公司
受检单位地址	河北省唐山市	雪妃甸区南堡开发区	开发路与荣业道交叉口北 150 米
样品名称	空气	样品数量	3
样品来源	现场采样	样品状态	
采样日期	2023.03.14	检测日期	2023.03.14
气象参数	温度: 15.	9℃,平均风向。西	比风,大气压: 102.1Kpa。

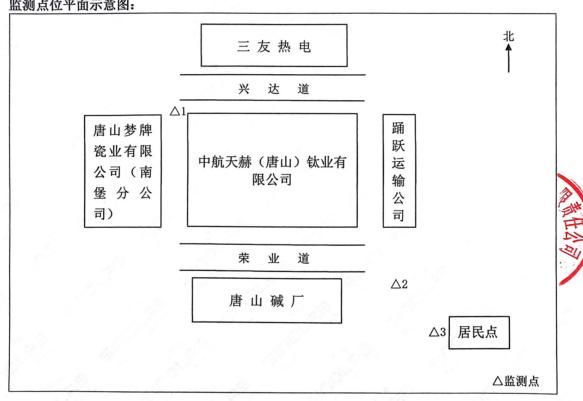
方法及仪器信息

检测项目	检测依据	仪器型号及名称	仪器编号
氡	HJ 1212-2021 《环境空气中氡的测量方法》	JCD-270(S)型测氡仪	HB-J-121

备注:最大风频下风向 500 米内无居民点, △2 为最大风频下风向 500 米处的监测点。

编制人:多和门

批准人: 多中洲ア



检验检测报告

点位名称	检测日期	样品编号	检测项目	单位	检测结果
环境空气对照点 △1	2023.03.14		氡	Bq/m³	12.28
最大风频下风向 500 米内居民点 △2	2023.03.14	— ·	氡	Bq/m³	32.73
设施周围最近居 民点△3	2023.03.14		氡	Bq/m³	20.46

监测点位平面示意图:

以下空白

