中航天赫(唐山)钛业有限公司 2023 年度环境辐射监测方案

中矿(天津)岩矿检测有限公司

目 录

1	单位概况	1
2	监测目的和原则	2
	2.1 辐射环境质量监测的目的	2
	2.2 辐射环境质量监测的原则	2
3	辐射环境监测方案	2
	3.1 y辐射剂量率监测	2
	3.1.1 监测点定位矫正	2
	3.1.2 监测设备	2
	3.1.3 现场监测方法	4
	3.2 空气中氡浓度及其子体	4
	3.2.1 监测点定位	4
	3.2.2 监测设备	4
	3.2.3 现场监测方法	5
	3.3 辐射环境监测点位布设	5
4	分析方法	6
5	质量保证	6
阼	 件: 监测点位布设方案	7

1 单位概况

中航天赫(唐山) 钛业有限公司成立于 2005 年 4 月,座落于河北唐山曹妃甸区南堡经济开发区,注册资本 33988 万元,是一家致力于为航空、航天、国防建设领域提供优质海绵钛、钛材加工及相关产品研发为一体的专业制造商和服务商。公司海绵钛项目年生产四氯化钛 8 万吨、海绵钛 1.5 万吨、钛加工材 1 万吨及配套的电解镁 1.8 万吨,总投资 40 亿元人民币,为高新技术企业。

中航天赫(唐山)钛业有限公司位于唐山市南堡开发区。厂区北侧为唐山三友化工股份有限公司,南侧焦化厂、相林皮革及三友集团碱厂,东为丽显公司,东侧300m为唐山化纤厂; 西为开阔的盐碱地; 东南1300m处为开发区居住区,距张庄子2500m; 南距滨海镇1600m,东北方向3500m处为老王庄村,厂址附近无特殊环境敏感点。厂址地理位置及周边关系见图1-1。

图 1-1 厂址地理平面位置图

2 监测目的和原则

2.1 辐射环境质量监测的目的

- (1) 判断伴生放射性矿开发利用活动流出物是否达标排放;
- (2)判断环境中放射性污染及其来源,报告辐射环境质量状况,掌握活动期间 辐射环境质量,积累环境辐射水平数据,掌握辐射环境质量的变化趋势,总结辐射 环境的变化规律,了解辐射环境水平是否异常,为辐射环境管理提供依据。

2.2 辐射环境质量监测的原则

辐射环境质量监测的内容,因监测对象的类型、规模、环境特征等因素的不同 而变化;在进行辐射环境质量监测方案设计时,应根据辐射防护最优化原则,进行 优化设计,随着时间的推移和经验的积累,可进行相应的改进。

3 辐射环境监测方案

3.1 γ辐射剂量率监测

依据《伴生放射性矿开发利用企业环境辐射监测要求》,陆地γ辐射剂量率监测要求厂界四周应不少于4个点,必须包括最大凤频的下风向厂界处,间距不超过500米,并设置环境对照点位。

3.1.1 监测点定位矫正

本次项目所有地表 γ 辐射剂量率监测点采用手持 GPS 定点,测量时根据现场实际情况调整测点位置,定点进行航迹管理,留下航迹记录,并提交航迹图。由于在实际工作中,所选用的西安 80 坐标系和 WGS-84 大地坐标系之间的误差是固有的,手持 GPS 经纬度值和图件的地形线会有一定程度的误差存在,因此在工作区内的与己知的控制点进行校正,使控制点坐标值和实际对应点 GPS 的坐标保持一致,这样就达到了消除误差和准确校正仪器的目的。

3.1.2 监测设备

本次现场监测采用的 X、r 剂量率仪(辐射防护剂量仪表)/中能 X 射线空气比释动能(图 3-1),该设备的性能如下:

- 1) 能量响应: 15KeV~10MeV, 指示值变化范围≤±30%
- 2) 量程范围: 50 nSv/h~10Sv/h
- 3) 持续测量模式下固有误差: ≤±15%
- 4) 重复性: 0.7% (测定点约定值 5.4µSv/h)
- 5) 不稳定性: ≤±5% (连续工作)
- 6) 温湿度影响: ≤10% (5℃~40℃, 相对湿度 95%);
- 7) 抗干扰能力: ≤5%;
- 8) 使用环境: 温度: (-30~+50) ℃ 相对湿度: 35%~95%
- 9) 功耗: 满电蓄电池供电,可以连续工作 12h。
- 10) 外形尺寸

 $(233 \times 85 \times 67)$ mm: 0.9kg

图 3-1 x - γ 剂量率仪

3.1.3 现场监测方法

使用便携式χ-γ剂量率仪对厂界周围环境辐射开展监测。本次γ辐射剂量率测量采用即时测量法,就是将γ辐射剂量率仪直接测量出点位上的γ辐射空气吸收剂量率的瞬时值,在测量过程中尽量保持仪器的探头表面与被测点的表面水平,间距为1m,测点距附近高大建筑物的距离需大于30m。当进行建筑物内测量时,需考虑建筑物的类型和层次,在室内中央距地面1m高度处进行。每个测点连续测量10次,每次测量时间为10s,并将测试结果填入《现场监测γ剂量率监测原始记录表》。

3.2 空气中氡浓度及其子体

3.2.1 监测点定位

本次项目所有氡浓度及其子体监测点采用手持 GPS 定点,测量时根据现场实际情况调整测点位置,定点进行航迹管理,留下航迹记录,并提交航迹图。由于在实际工作中,所选用的西安 80 坐标系和 WGS-84 大地坐标系之间的误差是固有的,手持 GPS 经纬度值和图件的地形线会有一定程度的误差存在,因此在工作区内的与已知的控制点进行校正,使控制点坐标值和实际对应点 GPS 的坐标保持一致,这样就达到了消除误差和准确校正仪器的目的。

3.2.2 监测设备

本次现场监测采用的测氡仪/JCD-270 (s)/HB-J-121 (图 6-4),该设备的性能如下:

- 1) 本底计数: <0.5count/min
- 2) 探测灵敏度: >1.3 count/min(/Bq.m3)
- 3) 探测下线: <2 Bq/m³
- 4)测量范围: 2~400000 Bg/m³
- 5)测量不确定度: ≤10% (K=2)
- 6) 测量时间: <5分钟
- 7) 存储功能:自动保存1000条谱线,可随时复查;
- 8) 电源: +12V(可充电电池)
- 9) 环境条件: -10℃~+50℃

10) 相对湿度: ≤95%

11) $26 \times 30 \times 15$ cm.

图 3-2 x - γ 测氡仪/JCD-270 (s) /HB- J- 121

3.2.3 现场监测方法

使用测氡仪/JCD-270(s)/HB- J-121对氡浓度开展监测。本次氡浓度测量采用即时测量法,测量空气中氡浓度时,仪器放置仪器架上,进气口距地面约1.5m,

3.3 辐射环境监测点位布设

本次受甲方单位唐山南堡经济开发区管委会委托,对中航天赫(唐山)钛业有限公司开展辐射环境监测工作,根据甲方要求,本次监测方案涉及空气氡及其子体、陆地γ辐射剂量率,并依据《伴生放射性矿产资源开发利用企业环境辐射监测及信息公开管理办法(试行)》、《辐射环境监测技术规范》HJ 61-2021 确定布点方案,对厂区周边陆地γ辐射剂量率和空气氡进行现场监测。共布设陆地γ辐射空气吸收剂量率监测点位 17 个、空气中氡及其子体监测点 3 个,具体点位分布情况见附件和下图。

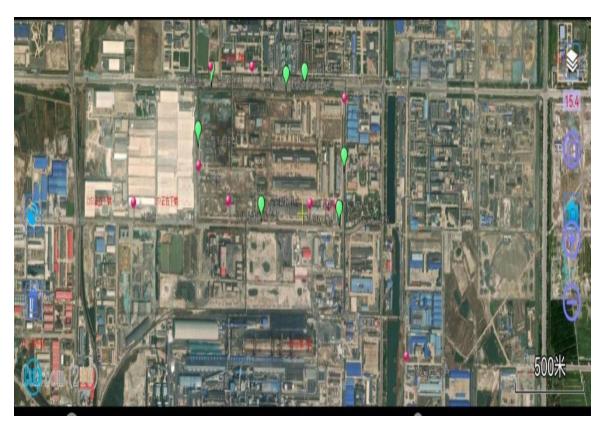


图 3-3 监测点位示意图

4 分析方法

- 《辐射环境监测技术规范》HJ 61-2021;
- 《铀矿冶辐射环境监测规定》GB 23726-2009;
- 《固体污染源监测质量保证与质量控制技术规范(试行)》HJ/T 373-2007;
- 《环境γ辐射剂量率测量技术规范》 HJ 1157-2021;
- 《环境空气中氡的标准测量方法》GB/T 14582-1993;
- 《放射性矿产地质分析测试实验室质量保证规范》EJ/751-2014

5 质量保证

环境辐射监测的质量保证按照《辐射环境监测技术规范》HJ 61-2021 和《固废污染源监测质量保证与质量控制技术规范(试行)》HJ/T 373-2007 中相关要求进行。

附件: 监测点位布设方案

监测 类别	监测对象	监测点位	检测项目	频次	备注
		设施周围最近居民点	氡及其子体	1	
	空气	最大风频下风向 500 米内最近 居民点		1	
		对照点		1	
		厂界南		1	
		厂界北	-	1	
		厂界东		1	
		厂界西		1	
		易洒落公路点1		1	
		易洒落公路点 2		1	
辐射		对照点		1	
环境		设施周围最近居民点		1	
监测		最大风频下风向 500 米内最 近居民点	γ辐射空气吸收	1	
		环境空气对照点	剂量率	1	
		土壤点(厂界南)		1	
		土壤点(厂界北)	-	1	
		土壤点(厂界东)		1	
		土壤点(厂界西)		1	
		土壤点(排气口最大风频下风向 500 米范围内)		1	
		土壤点(厂界和废水排放口 最近农田)		1	
		土壤对照点		1	